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1 INTRODUCTIONSmoothing splines play an important role in nonparametric function estimations. Their suc-cessful development from a mathematical framework of variational problems in Hilbert spacesto useful statistical techniques is described in two recent monographs by Wahba (1990), andGreen and Silverman (1994). Like most other smoothing techniques , smoothing splines haveprimarily been used to estimate the conditional mean function of a response variable givenone or several independent or design variables. Averaging (including local averaging) is wellknown to be sensitive to the presence of outliers. H�ardle (1989, Chap. 6), and more recentlyWang and Scott (1994), provided several alternatives for robust smoothing.The special case of median smoothing considered in this paper provides an importantrobust alternative to traditional mean smoothing. However, we are concerned mainly withestimation of conditional quantile functions, which have been recognized increasingly asan integral part of modern routine data analyses. Efron (1991) provided some interestingexamples of conditional quantile estimations for linear models. In a study on electricitydemand, Hendricks and Koenker (1992) estimated conditional quantile functions and showedthat heavy users of electricity exhibited much larger daily periodicity during the summer thanmoderate users did due to air conditioner usage. In many (if not all) regression examples, onewould expect a di�erent structural relationship for the higher (or lower) responses than theaverage responses. In such cases, both mean and median analyses would overlook importantfeatures that could be uncovered only by a more general conditional quantile analysis.Some recent work on univariate nonparametric estimation of conditional quantile func-tions can be found in Antoch and Janssen (1989), Bhattacharya and Gangopadhyay (1989),White (1990), Zelterman (1990), Chaudhuri (1991), He and Shi (1994), Welsh (1996), andHe (1997). Koenker et al. (1994) suggested the following direct approach using quantilesmoothing splines. 2
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For a univariate design variable xi with observed responses zi, the � -th quantile smoothingspline minimizes (over functions g(x)):nXi=1 �� (zi � g (xi)) + �V (g0) (1)for � 2 (0; 1), where �� (r) = � maxfr; 0g+(1� � )maxf�r; 0g, and V (h) = supPKi=1 jh(ti)�h(ti�1)j denotes the total variation of the function h with the `sup' being taken over all �nitepartitions t0 < t1 < � � � < tK of the support of h. If h is di�erentiable, it is easy to see thatV (h) = R jh0(x)jdx. The optimal solution, ĝ� (x), estimates the � -th conditional quantilefunction g� (x) which satis�es P fZ < g� (x) j X = xg = �for all x. The problem of quantile smoothing in (1) can be viewed as an analogy to the moreextensively studied mean smoothing of minimizingnXi=1 (zi � g (xi))2 + � Z (g00 (x))2 dx: (2)The solution to (2) is a natural cubic smoothing spline with knots at the observed designpoints. Its computation is rather e�cient as it simply amounts to solving a linear system. Thesolution to (1) is a linear smoothing spline with possible breaks in the derivative at the designpoints, and the computation can be performed by modern linear programming methods suchas Ng (1996)'s adaptation of the non-simplex active-set algorithm of Bartels and Conn (1980).Consistency results of mean smoothing splines require the existence of g (x) = E [ZjX = x]but no restriction on the distribution of (X;Z) is necessary for quantile smoothing splines.Recently, Shen (1997) obtained the global convergence rates of the quantile smoothing splinesand Portnoy (1997) presented some local asymptotic properties.When the response Z depends on two variables X and Y , we �rst assume, for the sakeof convenience, that zij is observed at each (xi; yj), (i = 1; � � � ;m; j = 1; � � � ; n), over the3
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partition, x1 < x2 < � � � < xm; and y1 < y2 < � � � < yn. The methodology proposed here,however, applies to more general designs as will become apparent later.Generalization of smoothing splines to bi- or multi-variate cases is not always straight-forward. The form of the solution often depends on the roughness penalty used in theoptimization process. For conditional mean estimation, a natural generalization of (2) is tosolve the following: ming mXi=1 nXj=1 (zij � g (xi; yj))2 + �J (g) (3)where the penalty is de�ned asJ(g) = Z ZR2 ng2xx + 2g2xy + g2yyo dxdy. (4)The solution is a natural thin-plate spline. See Green and Silverman (1994, p. 144), andWahba (1990, p. 30) for more details.For conditional quantile estimation, we propose the bivariate quantile smoothing spline,ĝ� (x; y), which solves ming mXi=1 nXj=1 �� (zij � g (xi; yj)) +R (g) (5)for the roughness penaltyR(g) = �1 mXi=1 Vy (gy (xi; �)) + �2 nXj=1Vx (gx (�; yj)) (6)where �1 and �2 are smoothing parameters, Vy (h) is the total variation of h (x; �) along they direction and Vx (h) is the total variation of h (�; y) along the x direction. We will show inSection 2 that the optimal solution is a bi-linear tensor-product spline.The natural thin-plate splines are rotation invariant. The bi-linear tensor-product splinesare, on the other hand, scale invariant. Optimality of the natural thin-plate spline in (3)holds only if the penalty is integrated over the complete two-dimensional Euclidean space.In practical problems where the design variables (X;Y ) usually lie in a bounded region,4
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the thin-plate spline is nowhere near optimal. For example, consider interpolating the fourpoints (0; 0; 0); (0; 1; 0); (1; 1; 1); (1; 0; 0). Direct calculations show that when integrated overthe unit square, the natural thin-plate spline has J (g) = 2�=log 2 > 9 as compared toJ (g�) = 2 for the bi-linear function g� (x; y) = xy.The L1 nature of the problem in (5) allows us to also compute the bivariate quantilesmoothing splines using linear programming techniques. The possibility of using linear pro-gramming methods for data smoothing was introduced by Schuette (1978) in a remarkablepaper in the actuarial literature. Recently Esther Portnoy (1994 & 1995) extended it tobivariate problems for smoothing actuarial tables.In Section 2, we study optimality properties of bivariate quantile smoothing splines.Their computational aspects are discussed in Section 3. Penalized (bivariate) quantile B-splines are proposed as approximate solutions for moderately large data sets. We also discussthe choice of smoothing parameters through a Schwarz-type information criterion. An ex-ample and a Monte Carlo simulation are given in Section 4 to illustrate the applications ofour methodology, and some concluding remarks pro�ered in Section 5.2 OPTIMALITY PROPERTYWe consider the special case where the covariates are observed on a rectangular grid G =(x1; x2; � � � ; xm) � (y1; y2; � � � ; yn), say on [0; 1]2, for convenience and without much loss ofgenerality. The grid provides a natural (m� 1) by (n� 1) partition of the unit square. Griddesigns often appear in controlled experiments or when data are rounded or grouped. Wemust emphasize that all the results in this paper remain valid under more general designswhere observations are not necessary available at every single grid point. In such situations,the rectangular grid G will be the tensor-product mesh formed by the unique values of bothcovariates. 5
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To be speci�c, we assumeC1. The � -th bivariate conditional quantile function, g� , belongs to the class U offunctions, g; that are continuous on [0; 1]2, twice continuously di�erentiable on each sub-rectangle [xi; xi+1] � [yj; yj+1] and the partial derivatives gx and gy have bounded totalvariations in x and y respectively.Analogous to (4), we could measure roughness byK (g) = Z 10 fVx (gx) + Vx (gy)g dy + Z 10 fVy (gx) + Vy (gy)g dx. (7)If g is twice di�erentiable on [0; 1]2, K (g) = R 10 R 10 fjgxxj+ 2 jgxyj+ jgyy jg dxdy. Unfortu-nately, the smoothest interpolant for (7) in a bivariate design is not in the space of bi-lineartensor-product splines with knots located at the design points:We illustrate this by construct-ing an example of two bi-linear tensor-product splines, g (x; y) and ~g (x; y), interpolatingthe same values 0B@ 2 0 �1 �13 1 1 3�1 �1 0 2 1CAon the 3� 4 grid G = (0; 1; 2; 3)� (0; 1; 2) over the domain D= [0; 3]� [0; 2]. In particular,g is the bi-linear tensor-product spline with knots at each point in G while ~g is the bi-lineartensor-product spline with knots in H � (0; 1:5; 3) � (0; 1; 2) de�ned over D by~g(i; j) = 0B@ 3 �1 �13 0 3�1 �1 2 1CA (i; j) 2 HStraightforward calculations (using peicewise linearity) showZ Vx(gx) dy = Z Vx(~gx)dy; Z Vx(gy)dy = Z Vx(~gy)dy; Z Vy(gx)dx = Z Vy(~gx)dxbut R Vy(gy)dx > R Vy(~gy)dx : Therefore, ~g is strictly better than g in terms of roughnessbased on any linear combination of the integrals in (7) (giving positive weight to the lastintegral) though g and ~g interpolate the same values on G.6
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To overcome the de�ciency that (7) does not lead to a simple characterization, wedecompose the roughness of a surface over G into roughness inside each sub-rectangularblock plus roughness along block boundaries. Speci�cally, we introduce~K(g) = �1 mXi=1 Vy (gy (xi; :)) + �2 nXj=1 Vx (gx (:; yj)) + mXi=1 nXj=1 �ijK (gij) (8)where gij is the function g restricted to (xi; xi+1)� (yj; yj+1), and �1, �2 and �ij are nonneg-ative constants. We now haveTheorem 1: Under condition C1, the function g that solvesming2U Xi Xj �� (zij � g (xi; yj)) + ~K (g)is a bi-linear tensor-product spline with knots located at the grid points.Proof: We �rst show that on each sub-rectangle, there exists a unique bi-linear functionthat minimizes K(gij) among all twice di�erentiable functions that interpolate the samevalues at the four vertices.There always exists a bi-linear function g� matching g at the four vertices of (a; b)�(c; d).Since g�xx = g�yy = 0 and g�xy = c�, a constant over the rectangle, it then holds, for every twicedi�erentiable function f interpolating the same values at the four vertices, that R R jfxyj �jR R fxyj = jf (a; c) + f (b; d)� f (b; c)� f (a; d)j = R R ���g�xy���.We need to show next that if f minimizes S(g), the bi-linear tensor-product spline g�that has the same �tted values at (xi; yj) satis�es ~K (g�) � ~K (f). This holds because, bythe same arguments used in Koenker et al. (1994, p. 675), Vx (g�x (:; yj)) � Vx (fx (:; yj)) foreach j and Vy �g�y (xi; :)� � Vy (fy (xi; :)) for each i.Finally, we note that the space of bi-linear tensor-product splines with knots at thegrid points is compact as each spline is determined by mn values. The minimum of S (g) isattainable within the class. The proof of Theorem 1 is then complete. }7
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Again we can view ~K (g) as an L1 version of the penalty~J (g) = �1 mXi=1 Z 10 (gyy (xi; y))2 dy + �2 nXj=1 Z 10 (gxx (x; yj))2 dx+�3 Z 10 Z 10 (gxxyy (x; y))2 dxdy (9)used in Hu and Schumaker (1985) and Schumaker and Utreras (1990). The smoothestinterpolant for ~J (g) is in the class of bi-cubic tensor-product splines. In our case, optimalityof bi-linear tensor-product splines is less sensitive to the speci�cation of the roughness penaltyon gij. We can replace K (gij) in (8) by J (gij) or any linear combination of R R g2xx, R R g2xyand R R g2yy in (4) without altering the form of the solution. De�ne~R(g) = �1 mXi=1 Vy (gy (xi; :)) + �2 nXj=1 Vx (gx (:; yj)) + mXi=1 nXj=1 �ijJ (gij) , (10)and we haveTheorem 2: Under condition C1, the function g that solvesming2U Xi Xj �� (zij � g (xi; yj)) + ~R (g)is a bi-linear tensor-product spline with knots located at the grid points.Proof: Similar to the proof of Theorem 1 using the approach of Green and Silverman(1994, p.144).Since the optimal solution is a bi-linear tensor-product spline that can be completelyde�ned by its values at the boundaries x = xi and y = yj, we can simplify the roughnessmeasure in both Theorem 1 and Theorem 2 even further. The inclusion of K (gij) in (8) andJ (gij) in (10) favors block-wise additivity and linearity, which is generally not desirable insurface �tting. If the true quantile surface is in fact additive and linear, the roughness mea-sured along the block boundaries should automatically favor the desired structure withouteven using K (gij) or J (gij). This is why we suggest using (6) as the roughness penalty.8
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3 IMPLEMENTATIONA major virtue of the L1 roughness penalty of (6) is that we can compute the bivariatequantile smoothing spline as a linear program. Given a general set of knots, 0 = u0 = u1 <� � � < ukm = ukm+1 = 1 and 0 = v0 = v1 < � � � < vkn = vkn+1 = 1, let �x = fukgkmk=1 and�y = fvlgknl=1 be partitions, and ~�x = fukgkm+1k=0 and ~�y = fvlgkn+1l=0 be extended partitionson the domains of x and y respectively. Also let S ~�x = nsjs (x) =Pkm+1k=0 kBk (x)o andS ~�y = nsjs (y) = Pkn+1l=0 lBl (y)o be the spaces of linear B-splines where Bk and Bl are thebasis splines as de�ned in Schumaker (1981). Denote � =�x 
 �y as the tensor-productmesh and ~� =~�x
 ~�y as the extended tensor-product mesh. The space of bi-linear tensor-product B-splines for (x; y) 2 [0; 1]2 is then de�ned asS ~� = S ~�x 
 S ~�y = 8<:sjs (x; y) = km+1Xk=0 kn+1Xl=0 klBk (x)Bl (y)9=; .When the tensor-product mesh is equivalent to the design grid, i.e. � �G, S ~� provides aB-splines representation for our bivariate quantile smoothing splines.Now we can express (5) asmins2S~� mXi=1 nXj=1 �� (zij � s (xi; yj)) + �10@ mXi=1 nXj=2 jsy (xi; yj+1)� sy (xi;yj)j1A+�2 0@ nXj=1 mXi=2 jsx (xi+1; yj)� sx (xi;yj)j1A . (11)Writing the (m+ 2) (n+ 2) vector of parameters for the bi-linear tensor-product B-splinesas  =(0;0; � � � ; 0;m+1; � � � ; n+1;0; � � � ; n+1;m+1)T , we can rewrite (11) into the followingcompact L1 formulation: min2R(n+2)(m+2) 3mn�m�nXi=1 !i j~yi � ~xij (12)where ~y = (z11; � � � ; z1n; � � � ; zm1; � � � ; zmn;0)T is a (3mn�m� n) pseudo-response vector,!i is a weight assigned to the ith observation and ~xi is the ith row of a (3mn�m� n) �9
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(n+ 2) (m+ 2) pseudo-design matrix ~X , the details of which are explicitly given in theAppendix.It is well known that (12) can be solved as a linear program. FORTRAN subroutinesutilizing the algorithm described in Ng (1996) and an S(plus) interface are available fromthe authors upon request.It is obvious from the pseudo-design matrix ~X of (13) that computation in (12) requiresO �(mn)2� operations. This can create storage and memory problems even for modestly bigdata sets. Our asymptotic analysis, con�rmed by real data experience, indicates that thee�ective dimension (measured by the number of interpolated points) as well as the requirednumber of B-spline knots in each covariate for an \optimal" �t is typically small. We,therefore, suggest approximating the solution using the penalized B-spline approach with asmaller number of knots in the order of km = O �m1=3� and kn = O �n1=3�. A simple butusually e�ective method is to use no more than ten equally-spaced knots either in Euclideandistance or in percentile ranks of each covariate unless the function is extremely wiggly.An important issue in the implementation of bivariate quantile smoothing splines is thechoice of the smoothing parameters �1 and �2. As in the univariate case, these values deter-mine the e�ective dimension of the �t. We can view the choice of smoothing parameters as amodel selection problem where one needs to balance between goodness-of-�t and complexityof the model. Denote the total number of observations as N . Following the successful use ofthe Schwarz's type information criterion in Koenker et al. (1994) for the univariate quantilesmoothing splines, we choose �N =�1 = �2 to minimizeSIC (�N ) = log0@Xj Xi �� (zij � ĝ� (xi; yj))1A+ (1=2) p�N log (N) =N;where the e�ective dimension, p�N , which plays the role of model dimension in parametricregression, is the number of points interpolated by ĝ� . The resulting choice of �N is scaleinvariant. 10
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In the case of � = :5, the information criterion we use may be motivated as the Gaussianlikelihood based information criterion of Schwarz (1978) where the root mean square erroris replaced by a robust alternative of the average of the absolute residuals as a measure of�delity to the observed data. Similar ideas can be applied to other quantiles.Generalized cross-validation (GCV ) is commonly used in the literature for the leastsquares based smoothing splines. Asymptotically,GCV is equivalent to the Akaike informa-tion criterion (AIC), which is similar to SIC for modest sample sizes. It is not, however, asdirect to motivate the projection based GCV for the L1-type objective function we use.Asymptotically one needs to choose �N to minimize SIC over a reasonable range of thesmoothing parameter to ensure consistency of the resulting quantile estimates. In practice,we usually do so without explicit bounds. Instead, we suggest a rather subjective approach:if the spline with a �N chosen by SIC appears far too smooth, then one should examinethe SIC more carefully to see if a smaller �N corresponding to a local minimummight yielda better �t. On the other hand, the obvious minimum of SIC at �N = 0 should also beavoided.We also note that SIC is a step function in �N . Sensitivity analysis (parametric pro-gramming, see Gal, 1979) can then be used to obtain the whole spectrum of distinct bivariatequantile smoothing splines corresponding to all the �nitely many �N . More details may befound in Ng (1996).4 EXAMPLESWe use some real and simulated data sets to demonstrate bivariate quantile smoothingsplines in action. In all cases, we let �N =�1 = �2 as discussed in Section 3. The data inthe �rst example do not fall on a regular grid. The second example with simulated datais used to evaluate the performance of the median smoothing spline in estimating the true11
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regression function.Example 1: Consider the annual salary (in thousands of dollars) of baseball players asa function of performance and seniority. The data, available from lib.stat.cmu.edu, consist of263 North American Major League players for the 1986 season. We use the number of homeruns (HR) in the latest year to measure performance, and the number of the years (YEAR)as seniority variable. Figure 1 contains the scatter plots of the data. There is a rather lowsignal-to-noise ratio and severe non-additivity in the data. Furthermore, observations areavailable only on part of the grid as in most observational data.One could use a grid formed by the unique observed values in both covariates. There are36 and 21 unique values in HR and YEAR respectively. This gives rise to a linear programwith a larger number (874) of parameters than observations (263). So we chose to computethe penalized B-spline approximation with 10 equally spaced knots in each variable.The approximate � = (:25; :5; :75)-th penalized bivariate quantile B-splines are plottedin Figures 2 { 4. Only the �tted surfaces above the convex hull of the data are plotted.The smoothing parameters chosen by the SIC criterion are �N = (4:3; 1:7; 1:2) respectively.The approximate median smoothing spline indicates that salaries increase with YEAR, peakaround the tenth year, and then begin to decline. The rates of increase and decrease arehigher for better players. Since there is only one player with a career of longer than twentyyears, the �tted surface for Y EAR > 20 should not be taken too seriously. The third quartileshows a similar pattern except that salaries of average players peak at around the �fteenthyear and better players enjoy a slower rate of salary decline than those who are paid a mediansalary. The �rst quartile �t is quite uneventful as expected.For the purpose of comparison, we also computed Cleveland and Grosse's (1991) robustloess �t with span = :45 and Gu and Wahba's (1993) thin plate spline with smoothingparameter chosen by the generalized maximum likelihood (GML) criterion. The robust12
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loess is quite similar to our median spline, so the �tted function is not shown. The leastsquares based thin plate spline, shown in Figure 5, displays the usual sensitivity of leastsquares based smoothers to the outliers that are singled out in the scatter plots.Example 2: To assess the accuracy of our method, we present a small-scale simulationexperiment. Since alternative algorithms for bivariate quantile estimation with automaticchoices of smoothing parameters are not readily available, we restrict the performance com-parison to the median.We draw random samples of size N=100 from the following modelzij = sin (3�xi) cos (�yj) + eij=3; i = 1; � � � 10; j = 1; � � � 10where xi = yi = i=10 and eij's are independent and identically distributed errors from (i)standard normal, �; (ii) 5% contaminated normal, CN:05 = :95�(x) + :05�(x=5); (iii) 10%contaminated normal, CN:10 = :9�(x) + :1�(x=5) and (iv) Student's t with three degrees offreedom, t3.For regression models with symmetric errors, both conditional mean and median func-tions represent the true regression function in the usual sense. We compared the meansquared errors, MSE = (1=N)Xi;j (ĝ� (xi; yj)� g (xi; yj))2 ;of our bivariate median smoothing spline (bmss), the least squares based loess, thin-platesplines and Friedman's (1991) MARS. A total of 1000 samples were included in the study.The means and standard errors (in parentheses) of the MSE are reported in Table 1. Forbmss, we used the design grid as the tensor-product mesh. The smoothing parameter (span)for loess was set to 0.20 for the normal distribution, 0.30 for t3 and the two contaminatednormal distributions to make loess as competitive as possible. We adopted all the default13
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DistributionsSmoothers � CN:05 CN:10 t3bmss 0.0529 0.0577 0.0637 0.0690(0.00038) (0.00054) (0.00066) (0.00070)loess 0.0424 0.0634 0.0915 0.0800(0.00028) (0.00086) (0.00129) (0.00176)thin plate 0.0381 0.0647 0.0922 0.0827(GCV) (0.00042) (0.00101) (0.00158) (0.00206)MARS 0.0447 0.0918 0.1400 0.1150(0.00044) (0.00154) (0.00221) (0.00289)Table 1: Means and Standard Errors of MSE of Various Bivariate Smootherssettings in MARS except the degrees-of-freedom (df) charged for knot optimization was setto 1:0 to obtain the best possible performance from MARS.It is no surprise that the mean regression estimators ( loess, thin plate splines andMARS)are more e�cient for the normal error distribution. The bivariate median smoothing splineis clearly more robust than the mean estimators if the eij's are drawn from any of thethicker-tailed distributions.5 CONCLUDING REMARKSMotivated by the optimality property of bi-linear tensor-product splines, we propose thebivariate quantile smoothing splines as estimators for bivariate conditional quantile func-tions. For large data sets, a smaller number of equally-spaced knots in either Euclideandistance or percentile ranks of each covariate may be used to obtain a penalized bivariateB-spline approximation. E�cient computation by linear programs and the choice of thesmoothing parameters using a Schwarz-type information criterion are also demonstrated.Our experience with real and simulated data has been positive and encouraging.14
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If the sample is drawn from a regression model z = g�(x; y)+e where the error distributione has zero as the � -th quantile, then the bivariate quantile smoothing spline de�ned by (5) and(6) is a consistent estimator of g� in the area where the design points are asymptotically dense,provided that the smoothing parameters are so chosen that �1 = o(m1=3) and �2 = o(n1=3).Details on the asymptotic properties of the estimate will appear elsewhere. We should alsopoint out that our experience with linear regression quantiles suggests that the quantilesmoothing splines are consistent for a broader class of models than the regression modelindicated here with identically distributed errors.To see how the bivariate smoothing splines would behave under non-rectangular designs,we performed an almost identical simulation to that of Example 2 with the only exceptionthat the (xi; yi) pairs were drawn from a uniform distribution on a right-angle triangle. Theresults are similar to those presented in Table 1. However, if the design points fall in regionsof very di�erent shapes, one may prefer to perform a transformation of variables to map thedomain of the function into a rectangle before using tensor-splines.Finally, we wish to point out an alternative method of estimating conditional quantilefunctions. Stone (1991) considered the approach of estimating the entire set of conditionaldensity functions and using this for simultaneous estimation of the conditional quantiles.This approach will automatically preserve the natural ordering of the quantile functions.The method we choose in the present paper, which is computationally less demanding,estimates the quantile functions directly without having to assume that conditional densitiesare smooth. APPENDIX: MORE DETAILS FOR SECTION 3The pseudo-design matrix ~X in Section 3 has (3mn �m� n) rows and (n + 2)(m + 2)columns in the form of ~X = 264 BVyVx 375 (13)15
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in which B = h BT11 � � � BT1n � � � BTm1 � � � BTmn iTis an (mn)� (n + 2) (m+ 2) matrix with rowsBij = (B0 (xi)B0 (yj) ; � � � ; B0 (xi)Bn+1 (yj) ; � � � ; Bm+1 (xi)B0 (yj) ; � � � ;Bm+1 (xi)Bn+1 (yj)) ;Vy = h VyT11 � � � VyT1(n�1) � � � VyTm1 � � � VyTm(n�1) iTis an (mn�m) matrix with rowsVyi;j = hB0 (xi)nB(1)0 (yj+1)�B(1)0 (yj)o ; � � � ;B0 (xi)nB(1)n+1 (yj+1)�B(1)n+1 (yj)o ; � � � ;Bm+1 (xi)nB(1)0 (yj+1)�B(1)0 (yj)o ; � � � ;Bm+1 (xi)nB(1)n+1 (yj+1)B(1)n+1 (yj)oi ,and Vx = h VxT11 � � � VxT(m�1)1 � � � VxT1n � � � VxT(m�1)n iTis an (mn� n) matrix with rowsVxi;j = �nB(1)0 (xi+1)�B(1)0 (xi)oB0 (yj) ; � � � ;nB(1)0 (xi+1)�B(1)0 (xi)oBn+1 (yj) ; � � � ;nB(1)m+1 (xi+1)�B(1)m+1 (xi)oB0 (yj) ; � � � ;nB(1)m+1 (xi+1)B(1)m+1 (xi)oBn+1 (yj)� .The weight ! is a (3mn�m� n)-vector as! = 266666664 1=2 + (� � 1=2) sgn (~y1 � ~x1)...1=2 + (� � 1=2) sgn (~ymn � ~xmn)�11�21 377777775 ,where 1 is a vector of 1's. 16
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Figure 1: Scatter Plots of Baseball Data
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Figure 2: First Quartile Smoothing Spline for Baseball Data
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Figure 3: Median Smoothing Spline for Baseball Data
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Figure 4: Third Quartile Smoothing Spline for Baseball Data
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Figure 5: Thin-plate Spline Fit of Baseball Data
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